

Power Generation Flexibilisation Case Studies from Germany





By Ronald Rost & Arun Kumar Sarna





## **About VPC & Encotec**

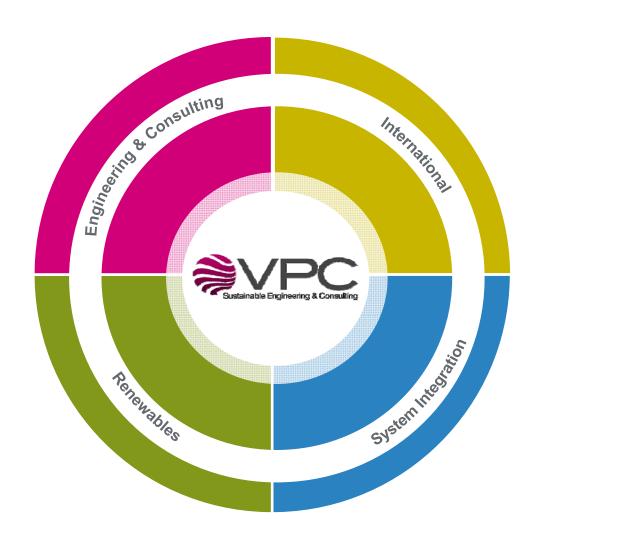
Moorburg Flexibilisation

flexGen Jaenschwalde



## **VPC – Profile**




| Shareholder       | palero                                                                                                                                                                                                                                                                                                                |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Range of services | <ul> <li>Engineering services for power generation<br/>and distribution plants</li> <li>Measurements and materials engineering</li> <li>Engineering with delivery (EPC-M)</li> <li>Operation and maintenance of power stations</li> <li>Trade of power plant components</li> <li>Renewable Energy Services</li> </ul> |
| Sales             | approx. 55 million euros                                                                                                                                                                                                                                                                                              |
| Workforce         | approx. 750                                                                                                                                                                                                                                                                                                           |
| Certified to      | ISO 9001, ISO 14001, OHSAS 18001, KTA 1401, SCC,<br>DAkkS accredited                                                                                                                                                                                                                                                  |

D-IS-14178-01-00 nach DIN EN ISI/IEC 17020 2012



## **VPC – Services Portfolio**







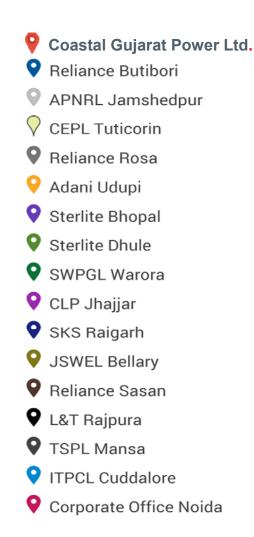
#### A Member of VPC Group

| Shareholding<br>Structure | 50 : 50 Indo German Company                                                                                                                                                                                                                                                   |
|---------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Range of services         | Engineering services, Erection & Commissioning<br>services, Operation & Maintenance services, Supply of<br>Chinese Spares & Overhauling of Thermal Power plants;<br>Operation & Maintenance services for Substations; EPC<br>of Solar PV Projects, Renewable & Climate Change |
| Sales                     | US\$ 9.3 Million                                                                                                                                                                                                                                                              |
| Workforce                 | 1200*                                                                                                                                                                                                                                                                         |
| Certified to              | ISO 9001 : 2008, ISO 14001 : 2015 & OHSAS 18001 :<br>2007                                                                                                                                                                                                                     |








\*as on October 31, 2017



5

### **ENCOTEC** Profile





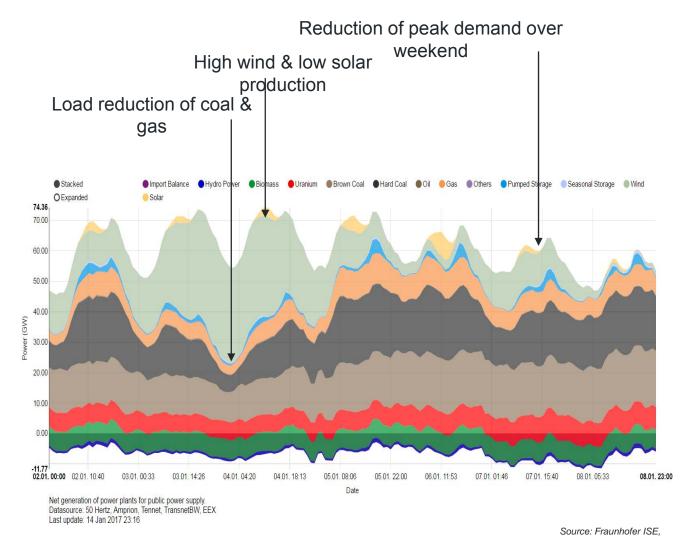






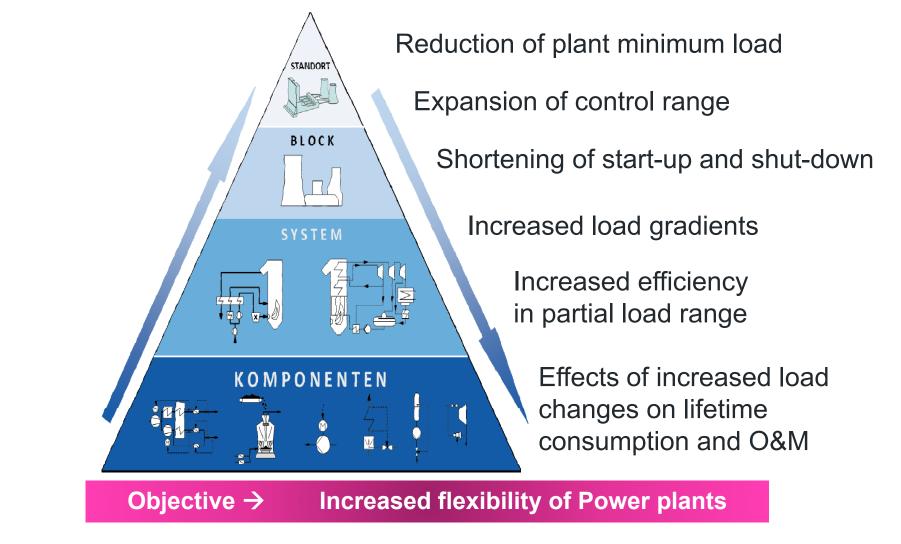


## About VPC & Encotec


## **Moorburg Flexibilisation**

flexGen Jaenschwalde




**Power production in Germany – calendar week 01/2017** 



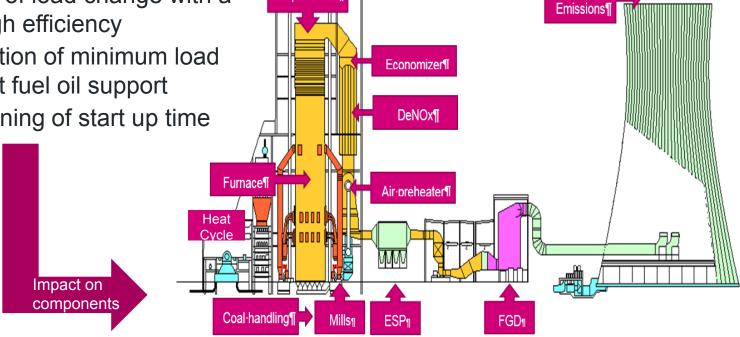


### Focal points of Vattenfall's flexGen program








### **Background – Impact on plant components**



Stack

#### Requirements on power plants:

- Increasing number of start-up and shut down process
- Speed of load change with a still high efficiency
- Reduction of minimum load without fuel oil support
- Shortening of start up time •



Superheater



2008 - 2012



#### **Construction period Continuous operation** 28.02. / 30.08.2015

#### **Technical data:**

| Live steam temperature        | °C        | 600              |              |
|-------------------------------|-----------|------------------|--------------|
| Live steam pressure           | bar       | 276              |              |
| Reheat steam temp.            | °C        | 610              |              |
| Live steam delivery           | kg/s      | 574              |              |
| Preheating stages             | -         | 9                |              |
| Feed-water temperature        | °C        | 293              |              |
| Exhaust steam pressure        | mbar      | 25 (abs.)        |              |
| Generator output              | MW        | 2 x 827          | and a second |
| Net efficiency (condens. mode | 46.5      |                  |              |
| CHP efficiency:               | %         | 58               |              |
| Fuel                          |           | bituminous coal  | (LHV: 26     |
| MJ/kg)                        |           |                  |              |
| Heat extraction               | $MW_{th}$ | designed for 450 | , actual 30  |
|                               |           |                  |              |

Commissioning year

Source: Vattenfall



2014



#### **Objective:**

- reduction from 35% (related to live steam quantity) to 26%
- plant operation must be ensured in pure coal operation, i.e. without additional oil firing or the use of auxiliary steam generators.

#### Measures:

- Control system adjustments
- Retrofit of automated NH4OH dosing of SCR DeNOx
- Reduction of the temperatures (live and RH) in the steam lines already during the shutdown process
- Adjustment of water-steam cycle diagram
- Adjustment of classification of emission data
- ➔ 9 minimum load tests have been undertaken
- ➔ 24% minimum load has been achieved, tests down to 20%
- ➔ Definition of new minimum load with OEM confirmation





#### **Objective:**

- check possibilities for increasing the load gradients during load operation
- shortening the start-up and shutdown times

#### Measures:

- Electrical heating of thick-walled components (not realized)
- Optimization of the individual step chains and parallelization of sequences (50 minutes during the start-up process were saved)
- Optimization of starting fire performance
- Air-side bypass of mill air heat exchanger
- ➔ Definition and implementation of test programs
- ➔ Optimization of individual step chains and parallelization of sequences
- ➔ Shortened start up time warm-start by 30 min (104 to 78 min)
- → 35% (49 to 32 t) fuel oil reduction achieved



15 | VPC GmbH | Flexibilisation case studies | 2017-12-01

### **MoorFlex - Expansion of warm start capability**

#### **Objective:**

• Extend the warm start capability to a standstill period of > 48 hours to approx. 60 hours.

#### **Measures:**

- Installation of flue gas isolation valves with heated locking air system
- Installation of gas isolation valve at combustion air system with lock air system
- Pressure control with external steam load (not realized due to T24 material)
- Expansion of water level measurement bottle (not realized due to cost-benefit analysis)
- Retrofitting of automated butterfly valves at pulveriser locking air to avoid pressurizing the combustion chamber



Source: Vattenfall







#### **Objective:**

- Retrofit of electric ignition at the burners of the level 30 to reduce the required fuel oil quantity during the start-up process as well as to save the necessary start-up times
- Avoid fuel oil ignition of 3<sup>rd</sup> burner level during minimum load operation with 2 burner levels

#### Measures:

- Design engineering is fully completed and prepared for implementation and includes exchange of oil ignition lances in favor of electric ignition
- Implementation of the measures was not undertaken due to a lack of practicability in accordance with the testing experience in existing plants (overheating of ignition parts)
- Ignition system must be further developed before applied in Moorburg



#### **MoorFlex – online information**





Source: Vattenfall







## About VPC & Encotec

Moorburg Flexibilisation

flexGen Jaenschwalde





#### Construction period Continuous operation

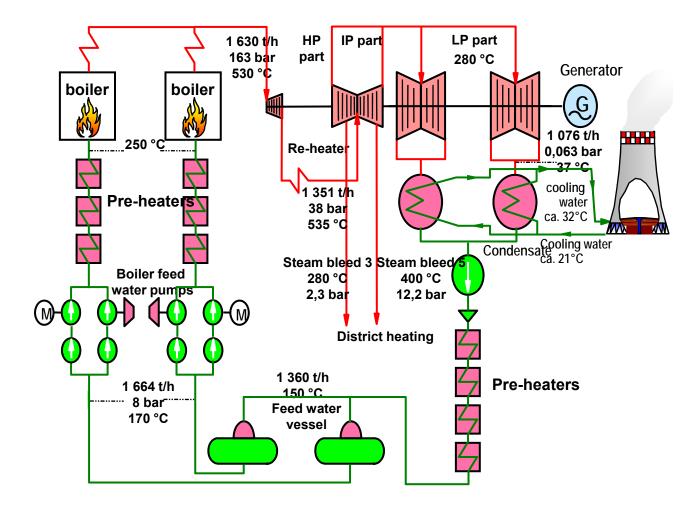
#### **Technical data:**

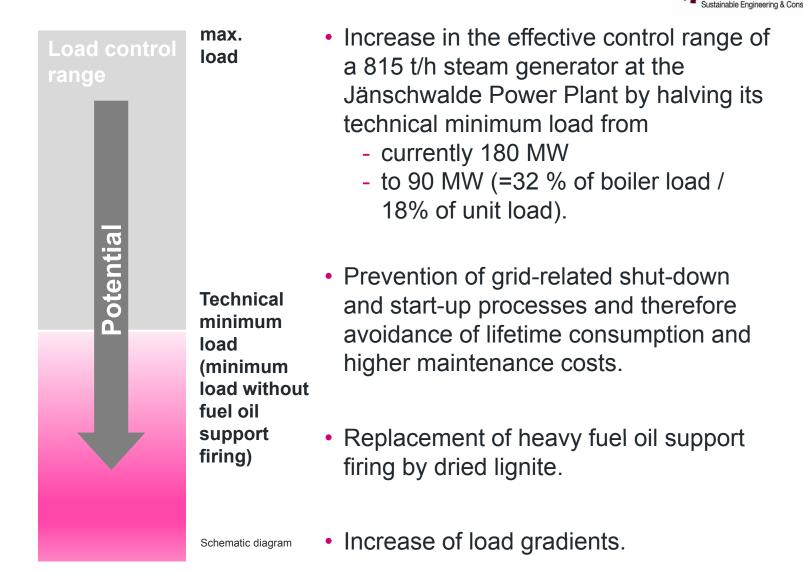
Live steam temperature Live steam pressure Intermediate steam temp. Live steam delivery Preheating stages Feed-water temperature Cooling water temp. Exhaust steam pressure Generator output Fuel Heat extraction 1977–1988 1982/1985/1988

| °C               | 535          |
|------------------|--------------|
| bar              | 172          |
| °C               | 540          |
| kg/s             | 2 x 226      |
| -                | 7            |
| °C               | 245          |
| °C               | 20           |
| mbar             | 50           |
| MW               | 530          |
|                  | lignite, RDF |
| MW <sub>th</sub> | 348          |



Commissioning year

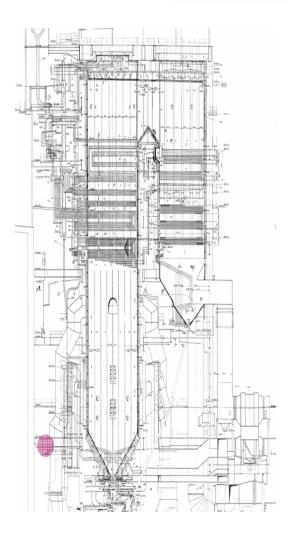

1981/82 / 1983/85 / 1987/88




## Simplified flow scheme of a 500 MW unit

Sustainable Engineering & Consulting

Jänschwalde Power Plant








#### **Tasks & Requirements**

- Organization of dried lignite supply
- Establishment of dried lignite storage at JPP
- Replacement of the oil burner/oil supply systems in the steam generator area by a dried lignite fuelled ignition and support firing system (dried lignite burner with dosing, conveying and combustion air supply systems)
- Use of existing oil burner openings on the steam generator
- Use of electrical direct ignition
- Functional integration of the controller and safety circuit in the power plant's I&C system
- Optimization of the water-steam and air-flue gas systems in the new minimum load range





#### **Operating requirements**

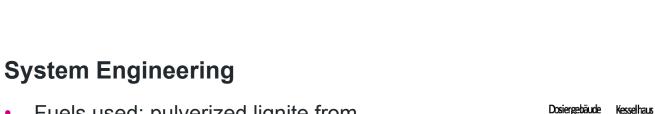
- Low load operation with mixed fuel (raw lignite + dried lignite) up to 270 t/h boiler output (33%)
- Improvement of the dynamics of boiler operation
- Improvement in the provisions of secondary control power
- Total firing system's thermal output with dried lignite: 240 MWth
- Rating for 100 boiler start-ups per year, unlimited auxiliary burner operation
- Low CO and NOx emissions, main emission limits down to a minimum boiler output of 270 t/h
- Non-slagging operation
- Auxiliary burner use with low quality raw lignite
- Short start-up time
- Mixed fuel operation with various combinations of coal pulverisers
- Low wear and tear of the system



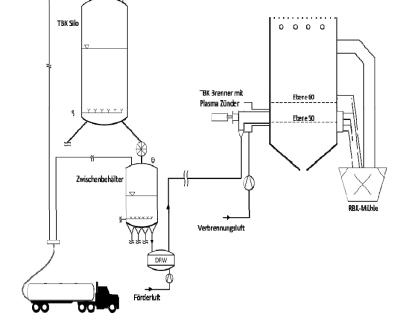
#### | VPC GmbH | Flexibilisation case studies | 2017-12-01






24

Two dosing tanks with a storage capacity of 8 t each


cotec

- of 650 t, protection criteria CO, CH4 and max. temperature in the silo
- LHV=21 MJ/kg, W=10.5%, A=6.0% Dried lignite silo with a storage capacity
- Fuels used: pulverized lignite from ٠ refining and dried lignite from the pressurized steam fluidized-bed drying (DDWT) system; quality parameters:

Jänschwalde Power Plant





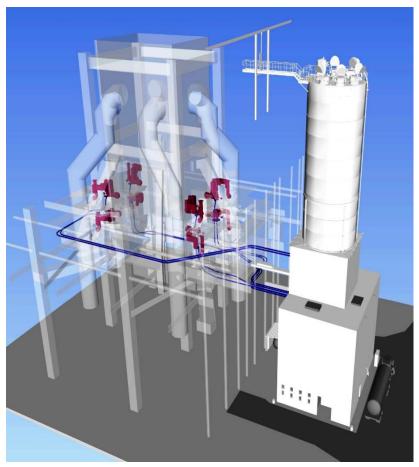


- Replacement of oil burners by 8 dried lignite burners
- One dosing tank supplies the 4 lignite burners on each level
- Each burner has a rotary weigh feeder, conveyor air blower, dust line, combustion air fan and ignition system (plasma ignition)
- The thermal output of each burner is infinitely variable between 7.5 and 30 MWth, controlled by the rotary weigh feeder
- CO2 inertization system, tank capacity 5.4 t, with liquid CO2



Source: Vattenfall








Special plasma burner for dried lignite



**First fire** 



3D Model of dried lignite silo building, fuel piping and burners arranged at the 815 t/h boiler no. F2

Source: Vattenfall





## ... FOR BETTER RESULTS.